- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
02
- Author / Contributor
- Filter by Author / Creator
-
-
Agurto-Gangas, Carolina (2)
-
Anania, Rossella (2)
-
Carpenter, John (2)
-
Cieza, Lucas A (2)
-
Deng, Dingshan (2)
-
González-Ruilova, Camilo (2)
-
Gárate, Matías (2)
-
Miley, James (2)
-
Pascucci, Ilaria (2)
-
Pinilla, Paola (2)
-
Pérez, Laura M (2)
-
Rosotti, Giovanni P (2)
-
Ruiz-Rodriguez, Dary A (2)
-
Sierra, Anibal (2)
-
Tabone, Benoît (2)
-
Trapman, Leon (2)
-
Vioque, Miguel (2)
-
Zhang, Ke (2)
-
Hogerheijde, Michiel (1)
-
Kurtovic, Nicolas T (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Protoplanetary disk evolution can be deeply influenced by the UV radiation emitted by neighboring massive stars (mainly of spectral types O and B). We show that the process ofexternal photoevaporation, which causes an outside-in depletion of disk material due to environmental UV radiation, can lead to a significant decrease in disk size, disk mass, and lifetime even at moderate irradiation levels (1–10 G0). In this work, we investigate the role of external photoevaporation in shaping the masses and sizes of the 10 AGE-PRO disks in the Upper Scorpius (Upper Sco) region, which we estimate to be subject to far-ultraviolet (FUV) fluxes ranging between ∼2 and ∼12 G0, on average. We compare the disk masses and sizes resulting from 1D numerical viscous evolution simulations, in which the effect of external photoevaporation is included, to the values retrieved from the AGE-PRO observations. While the pure viscous framework fails in adequately explaining the observed disk properties in Upper Sco, with the inclusion of external photoevaporation, we can successfully reproduce gas disk sizes for seven out of 10 sources within a factor <2, when the initial disk mass is 1%–10% of the stellar mass. We emphasize the importance of accounting for the environmental irradiation when comparing star-forming regions of different ages, even when moderate FUV irradiation fields are experienced, as in the case of Upper Sco.more » « lessFree, publicly-accessible full text available July 31, 2026
-
Kurtovic, Nicolás T; Gárate, Matías; Pinilla, Paola; Zhang, Ke; Rosotti, Giovanni P; Anania, Rossella; Pascucci, Ilaria; Tabone, Benoît; Trapman, Leon; Deng, Dingshan; et al (, The Astrophysical Journal)Abstract The potential for planet formation of a circumstellar disk depends on the dust and gas reservoirs, which evolve as a function of the disk age. The Atacama Large Millimeter/submillimeter Array AGE-PRO Large Program has measured several disk properties across three star-forming regions of different ages, and in this study, we compare the observational results to dust evolution simulations. UsingDustPyfor the dust evolution, andRADMC-3Dfor the radiative transfer, we ran a large grid of models spanning stellar masses of 0.25, 0.50, 0.75, and 1.0M⊙, with different initial conditions, including: disk sizes, disk gas masses, and dust-to-gas ratio, and viscosity. Our models are performed assuming smooth, weakly, or strongly substructured disks, aiming to investigate if any observational trend can favor or exclude the presence of dust traps. The observed gas masses in the disks of the AGE-PRO sample are not reproducible with our models, which only consider viscous evolution with constantα, suggesting that additional physical mechanisms play a role in the evolution of the gas mass of disks. When comparing the dust continuum emission fluxes and sizes at 1.3 mm, we find that most of the disks in the AGE-PRO sample are consistent with simulations that have either weak or strong dust traps. The evolution of spectral index in the AGE-PRO sample is also suggestive of an unresolved population of dust traps. Future observations at high angular resolution are still needed to test several hypotheses that result from comparing the observations to our simulations, including that more massive disks in gas mass have the potential to form dust traps at larger disk radii.more » « lessFree, publicly-accessible full text available July 31, 2026
An official website of the United States government
